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Abstract—With the rapid advancement in synthetic speech
generation technologies, great interest in differentiating them
from the natural speech is emerging. These advancements have
produced results that can deceive some of the state-of-the-art
spoof detection models. To prevent potential adverse effects,
it becomes crucial to detect the spoof signals and predict the
algorithm which generated them, which needs an understanding
of the underlying attributes of spoof signals.

In this paper, we propose a system that detects spoof signals
and identifies the corresponding speech generation algorithm.
We achieve 98% both in algorithm classification accuracy and
spoof detection accuracy. The study emphasizes the parts of
speech signals critical in identifying their authenticity by utilizing
the Vocal Tract System(VTS) and Voice Source(VS) features.
From experiments, we found that a VS feature-based system
gives more attention to the transition of phonemes, indicating
limitations of existing state-of-the-art TTS systems. In contrast,
a VTS feature-based system gives more attention to stationary
segments of speech signals. We proposed a couple of model fusion
techniques to utilize the complementary information provided by
these features to enhance classification performance. To validate
the proposal, we analyzed the t-SNE plots for developed models
which verified that feature fusion resulted in better clustering of
the embeddings.

Index Terms—Synthetic Speech Attribution, X-vector, Bicoher-
ence, LP Residual, Coarticulation

I. INTRODUCTION

In the recent years, there has been a significant improvement
in the performance of synthetic speech production models.
This improvement has enabled the generation of synthetic sig-
nals, which can even fool some state-of-the-art spoof detection
models. Failing to detect spoof signals has adverse conse-
quences. For example, speech is used for user identification
in many modern systems, and the ability to synthesise fake
speech poses a huge security threat [1].

There are diverse methods of generating spoof speech [2],
ranging from simple cut-and-paste methods to advanced Deep
Neural Networks (DNNs) [3]–[6]. Utilizing high quality mi-
crophones and advanced TTS and VC systems makes problem
of detecting spoof speech signals a complicated task.

There have been many studies which investigate the usage
of different features to be used for differentiating spoof signals
from natural signals. Some studies [7], [8] suggest that features
consisting high frequency information have pronounced affects
on spoof speech. Authors of [9] show that features conveying
information of high frequency regions and detailed spectral
characteristics are very useful for spoof detection. We utilise

Mel Spectrograms and LP residuals, in order to exploit both
magnitude and phase information of spoof speech.

Authors of [10] investigate attention given to phonemes in
speech signals and shows that certain phonemes which are the
highest attended, help make better predictions about spoofing
when used for classification. We show similar explainability
of our DNN models by analysing attention given to various
graphemes.

We propose a spoof speech classifier using DNNs, with
VTS or Vocal Tract System (Mel Spectrogram) and VS or
Voice Source (Linear Prediction Residuals) features to identify
spoof signals and classify them to their generators. Looking
at LP Residuals is rather a seldom approach in contrast to the
features used in the literature. After examining the proposed
system’s attention to the speech signals, we discovered that
VS based-system emphasises phoneme transitions which is
illustrated in V-C . At phoneme transitions, it is evident that
source excitations change more significantly than vocal tract
responses. This analysis helps understand the synthetic speech
generator models better and make them more efficient by
working on critical phoneme transitions, also referred to as co-
articulations [11]. In contrast, VTS based-system emphasises
the stationary regions of a speech signal, where the vocal tract
response changes are significant. While studying these aspects,
we also investigated the benefit of utilising the complementary
information provided by the VTS and VS features for the
attribution of speech samples [12].

The contributions of this paper are as follows,
• We propose DNN based spoof classifiers using VTS and

VS features. Various fusion techniques were implemented
to enhance the performance.

• We analysed the artefacts identified by the DNNs for
classification

The paper is organised as follows. In Section II, we discuss
about feature extraction methodologies employed in this work.
In Section III, usage of higher-order correlations in this study
is motivated. In Section IV, the proposed model architectures
are described. In Section V, the results obtained with further
study on the network behaviour are illustrated. Finally, In
Section VI, we conclude the paper with future scope of our
work.

II. FEATURE EXTRACTION

In this section, we briefly describe one of the speech produc-
tion model known as Source-System model. Later we discuss
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the features which could potentially capture the artefacts in
spoof speech which are Log Mel Spectrogram capturing VTS
features and Linear Predictive Residuals capturing VS features.

A. Speech Production Model: Source-System Model

Speech production is a very sophisticated task. The motor
activities are both fast and accurate. The speech production
mechanism can be briefly explained as follows: the lungs act
as a source of energy moderating the air flow, while the vocal
folds in the trachea operate the airflow from the lungs into
quasi periodic puffs of excitation. The shape of the vocal tract
determines the sound that is produced.

Fig. 1: Speech Production Model

In the literature many researches have proposed models [13],
[14], [14]–[17] to describe the speech production system and
model the non-linearities. However, in this study we restrict
ourselves to Source-System Model as shown in Figure 1.
This model assumes linearity and that the source and system
work independently to produce speech. Here, the speech signal
obtained is an outcome of a time-varying vocal-tract system
driven by time-varying excitation [18], which can be modelled
as 1.

s[n] = v[n] ∗ e[n] (1)

Let s[n], v[n] and e[n] be the speech signal, impulse response
of the vocal tract filter and excitation signal. The speech signal
is the output of time varying digital filter (v[n]) with time
varying excitation (e[n]).

Synthetic speech algorithms seek to mimic this natural
system, where they may fail to incorporate subtle features of
speech production such as

• Co-articulation of phoneme sequences,
Phoneme transitions in synthetic speeches tend to have
disfluencies because of abrupt phoneme transisitons in
synthesis algorithms. [19] provides a good survey about
phonetic variations in synthetic speeches.

• Prosodic variations such as jitter, shimmer,
Natural speech have more variations in the excitation
source making it highly unpredictable. In contrast, the
excitation source of sythetic speech are more periodic
and less noisy, as a result having less shimmer and jitter
in the impulse train, as pointed out in [20].

B. Vocal Tract System Features : Log-Mel filter bank energies

The Vocal Tract System is a concatenation of acoustic tubes.
The resonances of the vocal tract tubes manifest as formant
frequencies in the spectorgram of the speech signal. Hence
capturing the formant frequencies of the speech signal can
convey the information about the vocal tract system being
used in the speech production process. Many works [21]–
[25] utilize the(MFCC (mel-frequency cepstral coefficients)
and LPCC (linear prediction cepstral coefficients) features to
capture the magnitude information.

Log Mel filter bank energies is one of the popular way to
extract the information about the vocal tract system. These
features are extracted from speech signals segmented into
chunks of 25ms, which usually corresponds to 3-5 pitch peri-
ods. Short Time Fourier Transform (STFT) is then performed
over these chunks, then followed by mel-scale warping and
finally applying logarithm over the obtained features. These
magnitude consists upto 2nd order statistics conveying about
vocal tracts in speech production model.

C. Voice Source Features : Linear Prediction Residuals

The voice source features capture the vocal cords charac-
teristics in speech production. The phase spectral information
is complementary to information from VTS features [12],
[26] for the fact that we are limiting to 2nd order statistics.
Suppressing the magnitude envelope results in a relatively
flat spectrum that characterizes the phase information. Linear
Prediction (LP) analysis [27]–[29] is one such methodology
where the magnitude spectral envelope is repressed by first
finding the magnitude spectral envelope and then operated
with an inverse formulation which results in residual rich in
higher order correlations, with phase content. This feature
is called the LP residual, which captures the voice source
features. Analytically, the VTS response is modelled as a linear
prediction filter.

s[n] =

K∑
k=1

ais[n− k] +Ge[n] (2)

S(z) = V (z)E(z); V (z) =
G

A(z)
=

G

1−
K∑

k=1

akz−k

(3)

E(z) = V (z)−1S(z) (4)

LP Residual is obtained as result of inverse filtering the
speech signal with estimated VTS response H(z). For our
study, we perform all pole modeling of LP Residual. The order
is chosen such that we have one resonance for each kHz (p =
4+fs/1000) [30]. We ensure that the order is odd, to constraint
the LP analysis with atleast one real pole [31].

According to Source-System model, excitation source of
voiced sounds is impulse train in an ideal setting. However,
natural signals are very off from the ideal scenario and
excitation source does not have consistent period (jitter) nor
constant amplitude (shimmer) making it less predictable as
shown in Figure 3. On the other hand, LP Residuals of spoof
signals are periodic and have relatively constant period making
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them more predictable and this is consistent with all the spoof
algorithms. This is a potential discriminative feature which can
be exploited to classify the spoof signals.

III. RATIONALE FOR LOOKING INTO HIGHER ORDER
CORRELATIONS

Capturing the magnitude spectral features (2nd-order statis-
tics) for speaker verification [32] tasks has been one of the
standard approaches. But with evolution of technology, the
synthetic speech production techniques have been able to fairly
mimic these features indistinguishable from a normal speech
signal. Therefore, using 2nd-order features is incomprehensi-
ble and as a result one should explore higher order statistical
features to capture the discriminatory behaviour underlying
within these synthetic speech generating algorithms. One such
feature explored in the literature was Bispectrum [33] of a sig-
nal. This feature is a third-order statistic (or skewness), using
this discrimination among different algorithms has enhanced
as illustrated in Figure 2, we use bicoherence (Equation 5)
which is normalised bispecturm making phase content more
pronounced. We clearly see clear distinction among different
algorithms, while GAN based TTS has cross white strips and
are absent for the rest. However, there also exists high within
the class variance.

Bcoher(ω1, ω2) =
1
W

∑W−1
w=0 X(ω1)X(ω2)X

∗(ω1+ω2)√∑W−1
w=0 |X(ω1)X(ω2)|2

∑W−1
w=0 |X∗(ω1+ω2)|2

(5)

This bolsters the utility of higher order features in the dis-
crimination of spoof speech signals. Moreover, we can realize
on an abstract level that the bispectrum captures the phase
spectral information [34]. This motivates for the exploration
of VS features as a discriminative evidence, recall VS features
are obtained after suppressing VTS response. And one such
VS feature exploited in this work is LP Residuals. By looking
at the LP residuals of the synthesized algorithms, fine charac-
terization in behaviours distinctive to certain synthesizer can
be observed in Figure 3. The residuals of synthetic algorithms
appear more periodic than that of the natural utterance. The
jitter and shimmer in the natural residual have a lot more
variation compared to the rest.

And as this information is not effectively captured by the
VTS features, we can extract more exhaustive information
from a speech sample by fusing both the features. There
have been some established works [35]–[39] which stated that
the source and the system features, complementary within
themselves, could be utilized together for analysis of speech
signals aiding in the task at hand.

In the further sections we propose a DNN based model
to exploit VS and VTS features to classify them into syn-
thetic generators. We fused the systems built on individual
features using different paradigms and show a performance
leap providing another evidence that VS and VTS are indeed
complementary in nature.

IV. MODEL ARCHITECTURES

We proposed two primary models, LP Residual based (LPR-
DNN) and Log Mel Spectrogram based (LMS-DNN) , which
are designed using DNN inspired by X-Vectors system [40]

Fig. 2: Log-applied bicoherence magnitude plots for 3 different
transcripts highlighting common phoneme for different speak-
ers and different synthetic speech producing algorithms. These
plots are displayed on a common intensity scale of [10,50].

Fig. 3: LP residuals of grapheme /AY/ from different algo-
rithms, for the sentence ’IS IT IN THE RIGHT PLACE?’ of
same speaker

with few additions like self-attention module [41], and custom
feature extractor consisting of trainable filter banks as shown
in Figure 4b. Furthermore, to exploit the complementary infor-
mation present in VS and VTS features we fuse our systems in
two ways, first at posterior scores and at architecture level. The
complete diagram of proposed model architecture is shown in
Figure 4a.
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(a) Generic architecture (b) Feature extractor for LP Residuals

Fig. 4: Proposed Architecture

A. LPR-DNN: VS feature based DNN
Speech signal with length of N with Mth-order LP Coding

we obtain (N-M-1) samples of LP Residuals, which is very
sparse in time. Therefore, we extract low dimensional features
using multiple filters and non-linear activation functions and
another important motivation for us to introduce a feature
extractor for LP Residuals is that, LP Residuals are obtained
by inverse filtering the speech signal with an envelope, so
called VTS Response, therefore the resultant spectrum of LP
Residuals is relatively flat and traditional feature extraction
methods will most likely be inefficient. Usage of LP Residuals
for the task of Spoof detection/classification is studied very
less in the literature, as a result, we propose a DNN based
feature extractor consisting of 1d convolutional filter banks
with non-linear activation functions as shown in Figure 4b.
The receptive field [42] of the proposed feature extractor is
165 (≈ 10ms), and we obtain 64 x T dimensional output,
where T = (N-M-1)/165.

Later Frame Level Encoding is performed on these features
using X-Vectors system, after obtain compact representation
(128 x Time steps) we perform multi-headed self-attention [41]
to mask out unimportant segments of extracted embeddings.
Finally, we to obtain a fixed dimensional vector we apply
statistical pooling [43] across time-axis producing a 1024-
dimensional vector.

B. LMS-DNN: VTS feature based DNN
To exploit the vocal tract features, we build X-Vector

network using Log-Mel Spectrogram features. Here, we use
only single headed self attention module, therefore obtaining
256-diemensional vector.

C. Model Fusion
Fusing systems using different paradigms in speech com-

munity [44], [45] are very popular and are known to show a
performance leap given complementary information available.
As discussed earlier, VS and VTS features have complemen-
tary information, which we would like to exploit in this study
by performing two different kinds of fusion.

1) LPR+LMS-DNN*: Score level fusion: One of such el-
ementary fusion techniques are known as score level fusion,
where we perform weighted average on logits obtained from
different systems. We perform the same on using LPR-DNN
and LMS-DNN with equal weightage.

2) LPR+LMS-DNN: Feature level fusion: Another sophis-
ticated fusion paradigm is fusing information at architecture
level, where we typically concatenate features in common
latent space of different systems. As shown in Figure 5a, we
concatenate features obtained after frame level encoding and
then perform multi-headed self-attention, statistical pooling
and logistic regression.

D. Motivation for Hierarchical Classifier

As witnessed in Figure 3, we observe a huge difference
between spoof signals and natural signals, thus it is rational to
assume that DNN can estimate the parameters faster and more
accurately. Therefore, we employed two different classifier in
our DNN architecture as shown in Figure 5b.

1) Vanilla Classifier (VC):
This is conventional logistic regression layer (LR1(.))
to predict logits with k+1 classes with k is number of
spoof algorithms and one natural class. The loss function
is described in equation 6.

LV C
(X,y)(θ) = H(y, LR1 (f (θ,X))) (6)

Where H(.) is Cross entropy function, f(.) is function
which returns embeddings from the DNN and θ are
parameters to DNNs.

2) Hierarchical Classifier (HC):
As the names suggests, we perform hierarchical classi-
fication with two levels, first we perform binary classifi-
cation (LR2(.)) to predict whether the signal is spoof or
not. Later we use the VC to predict the spoof algorithm.
The loss function is described in equation 6.

LHC
(X,y)(θ) = H(y, LR2 (f (θ,X))) + LV C

(X,y)(θ) (7)
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(a) Block Diagram of Feature Level Fusion (b) Block Diagram of Classifiers

Fig. 5: Architecture of LPR-LMS-DNN

Table I: Dataset composition (∗ represents common speakers)

Type #Speakers Proportion
Training 30+10∗ 33.25%

Validation 17+10∗ 16.11%
Evaluation 50 50.64%

V. RESULTS AND DISCUSSION

In this section, performance evaluation and ablation analysis
of the proposed architectures are studied. We train our models
LPR+DNN, LMS+DNN, LPR+LMS-DNN, and LPR+LMS-
DNN* and discuss about the obtained performances. Finally,
we infer about the highlighted segments of spoof speech
signal which are picked up by self-attention module in the
model. Subsequently, we deduce the attributes of spoof speech
signal which are exploited by the proposed model. A brief
implementation details used for the studies are discussed
below.

A. Data sets and Experimental details

The hardware specifications used for conducting the studies
are Intel Xeon Silver 4114 CPU @ 2.20GHz, four NVIDIA
GeForce RTX 2080 Ti GPUs. The software packages utilized
are PyTorch library for training the neural networks and scikit
for computing LP Residuals. This link 1 consists of source
codes for replicating all the results reported in this paper.

For conducting the studies we utilize Logical Access
portion of the data from the ASVSpoof 2019 data corpus
[46]. Custom data splits2were made since the work here
is primarily concerned about synthetic speech classification
but not speaker verification. We have created two versions
of custom data splits; one has uniform algorithms among
training, validation, and evaluation sets with the proportions
of 40%, 10%, and 50% respectively, this set is referred as
CS1; while the other has disjoint set of speakers in training
and evaluation datasets, this set is referred as CS2 The
composition of custom data splits are shown in Table I.

We use speech signals synthesized at sampling frequency
of 16KHz. The 23rd order of LP analysis [II-C] is done to

1https://github.com/TUdayKiranReddy/SPCUP2022

Table II: Results of various models (Algorithm Accuracy
%/Spoof Accuracy %/Spoof EER %)

Classifier type Backbone CS1 CS2
Evaluation Evaluation

VC

LPR-DNN 99/100/0.19 96/98/1.73
LMS-DNN 96/99/1.47 96/99/1.31

LPR+LMS-DNN* 100/100/0.25 99/99/0.7
LMS-LPR-DNN 99/100/0.3 98/99/0.1

HC

LPR-DNN 97/99/0.52 96/98/2.368
LMS-DNN 96/89/1.48 94/92/1.32

LPR+LMS-DNN* 99/99/0.19 98/99/0.853
LPR+LMS-DNN 99/99/0.636 98/98/0.704

HC
with silence removal

LPR-DNN 95/92/1.73 94/95/0.75
LMS-DNN 87/74/3.5 88/75/2.89

LPR+LMS-DNN* 88/88/1.0 93/94/0.326
LPR+LMS-DNN 98/98/0.63 94/99/1.2

compute LP residuals. Log Mel Spectrogram is computed with
80 mels, 512 bin FFT, window length of 400 samples (25ms),
and hop length of 160 (10ms).

We report both Classification accuracy (higher the better)
and Equal Error Rate (EER) (lower the better) to evaluate the
performance of our models.

B. Comparisons among variants of proposed models

The proposed models are hyper-tuned to achieve the best
performance, and Table II consists of the performances
achieved, to avoid over-fitting of DNNs due to distinct silent
regions present in spoof algorithms we also experimented with
silence removal using [47]. The below are the four major
points which we would like to accentuate.

1) VS features are a cut above than VTS features: As we
eye-balled the discriminatory features of VS, this is evident
from the performance on LPR-DNN, which is atleast 3%
superior than LMS-DNN. We can observe that EER also
follows the same trend. This depicts that VS features captures
the artefacts in the speech signal more prominently.

2) Performance leap with fusion techniques: As antici-
pated, fusion techniques showed better performance than LPR-
DNN and LMS-DNN, which is a popular paradigm in DNN
community to achieve better results. This performance leap is
observed in all the studies performed such as, with/without
silence removal, hierarchical classification and inference with

https://github.com/TUdayKiranReddy/SPCUP2022
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Fig. 6: t-SNE embeddings for processed vector from X-vectors

Table III: Effective receptive field and stride of proposed
models

Feature used Receptive Field Effective Stride
LP Residual 2160 (135 ms) 64 (4 ms)
Mel Spectrogram 4960 (310 ms) 12 (0.75 ms)

distinct speaker. We plotted t-SNE [48] embeddings onto 2D
space to evaluate the separability which are shown in Figure
??, and it is observed that clusters in LMS-DNN and LPR-
DNN embeddings are merged into others, whereas after per-
forming feature fusion the cluster are unalloyed comparatively.
This is yet another evidence for the theory that VS and VTS
features consist of complementary information.

3) Over-fitting of VTS features: On the CS1 data set, the
performance dip when silence regions are removed in LMS-
DNN is significant, implying that LMS-DNN is over-fitting
the data by exploiting the amount of silence region present in
synthetic speeches. In contrast, LPR-DNN shows robustness
to amount of silence regions.

4) Robustness with different speakers: Speaker over-fitting
is generic issue in speech recognition/verification, to test this
we have created CS2 dataset and train on it appropriately. The
results obtained have very slight variations compared to CS1,
implying that proposed DNNs are robust to new speakers and
can identify the underlying algorithm characteristics.

C. Inference from the highlighted segments

In this section, we analyze the self-attentive modules and
visualize the portion of the speech signal highlighted. We use
models LPR-DNN and LMS-DNN and we retrained LPR-
DNN with a single channel and single head self-attentive
module, for the sake of simpler analysis and to have common
ground. We pass a speech signal with an utterance of ”THERE
WAS A SUBSTANTIAL EXPLOSION” to LP residual and Mel
Spectrogram-based Models. We look at the attention values,
which is a vector of size T; where T is the number of
time steps, which is decided by the effective receptive field
and stride of the Time Delayed Neural Network(TDNN) as
mentioned in III. For the visualisation, the attention maps are
binarised, with their mean over time as the threshold.

From Figure 7, we find that LPR-DNN gives more attention
to the transition of phonemes. In literature, it is known as

Fig. 7: Attention maps on a synthetic speech signal with
an utterance of ”THERE WAS A SUBSTANTIAL EXPLO-
SION.”, NOTE:- GREEN bands indicate attention by LPR-
DNN whereas RED represents LMS-DNN

coarticulation [49]. This is evident from formants plots where
the green bands(LPR-DNN) are highlighted at the portions
where formants are changed significantly, indicating change in
phoneme. In contrast, LMS-DNN focuses on stationary parts
of phonemes where the formants are relatively constant.

Typically, when there is a change from voiced-to-unvoiced
sound or vice-versa, the source signal changes from random
noise to impulse trains. This change is captured by LPR-DNN
and it is different for different algorithms, therefore providing
stronger discrimination compared to LMS-DNN.

VI. CONCLUSION

We propose a spoof speech algorithm classifier using DNN
by using voice source (LP Residuals) and vocal tract (Mel
Spectrograms) features, by combining evidences from these
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two features we achieved a performance leap. Further in-
vestigation into the attention maps of DNN over the spoof
speech, we observed that LPR-DNN is focusing on phoneme
transitions and in contrast LMS-DNN is focused more on
stationary portion of phonemes. We conclude that artefacts
in spoof speech are deductive using higher order correlations
and the research in spoof speech generation algorithms have
to consider on improving natural phonetic transitions. This
study could be utilized for enhancing the synthetic generation
techniques by defending the defects identified. In particular, an
exhaustive study on phonemes could be performed to identify
which phoneme utterance could be more critical in spoof
detection.
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